
Speculations
on

Test-Time Scaling
Sasha Rush Daniel Ritter

Cornell - Hugging Face

[Brown et al., 2020]

[OpenAI, 2024]

AIME

For any finite setX , let |X| denote the number of elements inX . Define

Sn =
∑
|A ∩B|,

where the sum is taken over all ordered pairs (A,B) such that A and
B are subsets of {1, 2, 3, · · · , n} with |A| = |B|. For example, S2 = 4
because the sum is taken over the pairs of subsets

(A,B) ∈ {(∅, ∅), ({1}, {1}), ({1}, {2}), ({2}, {1}), ({2}, {2}), ({1, 2}, {1, 2})}

giving S2 = 0 + 1 + 0 + 0 + 1 + 2 = 4. Let S2022

S2021
= p

q
, where p and q

are relatively prime positive integers. Find the remainder when p+ q is
divided by 1000.

[Hendrycks et al., 2021c]

The Bitter Lesson

The bitter lesson is based on the histor-

ical observations that 1) AI researchers

have often tried to build knowledge into

their agents, 2) this always helps in the

short term, and is personally satisfying

to the researcher, but 3) in the long

run it plateaus and even inhibits further

progress, and 4) breakthrough progress

eventually arrives by an opposing ap-

proach based on scaling computation by

search and learning.

[Sutton, 2019]

Importance of Search

The most important [lesson] is that I and

other researchers simply didn’t know

how much of a difference scaling up

search would make. If I had seen

those scaling results at the start of my

PhD, I would have shifted to research-

ing search algorithms for poker much

sooner and we probably would have

gotten superhuman poker bots much

sooner.

[Brown and Sandholm, 2017],https:
//x.com/polynoamial/status/

1840822629625688469

https://x.com/polynoamial/status/1840822629625688469
https://x.com/polynoamial/status/1840822629625688469
https://x.com/polynoamial/status/1840822629625688469

Scaling Laws for Board Games
[Jones, 2021]

Search Against Learned Verifiers
[Cobbe et al., 2021]

Search Against Learned Verifiers
[Cobbe et al., 2021]

Sources
• Synthesis of discussions with expert

• Survey of the public literature

• Rumors from social media

Thanks to Lewis Tunstall, Edward Beeching, Aviral Kumar, Charlie Snell,

Michael Hassid, Yoav Artzi, Niklas Muennighoff, Risab Agarwal, Rafael

Rafailov, Kanishk Gandhi, Wenting Zhao, Yuntian Deng, Nathan Lambert,

Noah Goodman, Thomas Ahle, Li Erran Li, Justin Chiu, Jacob Eisenstein,

Sean Welleck, Caglar Gulcehre, Ofir Press

Outline

Introduction

The Clues

Technical Background

The Suspects

Implications

o1 Description

Our large-scale reinforcement learning

algorithm teaches the model how to

think productively using its chain of

thought in a highly data-efficient train-

ing process.

[OpenAI, 2024]

Implication

• RL; Signal from verifiable problems

• CoT; Test-time occurs in token stream

• Data-Efficient; Bounded set of problems

Current Assumptions

• Single final language model with coherent CoT

• Not following from expert examples

• Behaviors are learned

Review: Chain of Thought

• The model
generates

intermediate steps.

• These steps provide
an scratchpad for

technical problems.

Question: 4 baskets. 3 have 9 apples, 15

oranges, 14 bananas each. 4th has 2 less

of each. Total fruits?

Let’s solve step-by-step:

Fruits in one of first 3 baskets: 9 + 15 +

14 = 38

Total in first 3 baskets: 38 * 3 = 114

4th basket: (9-2) + (15-2) + (14-2) = 32

Total fruits: 114 + 32 = 146

Answer: 146 fruits

[Wei et al., 2022, Nye et al., 2021]

o1 Chain of Thought

o1 learns to hone its chain of thought

and refine the strategies it uses. It learns

to recognize and correct its mistakes. It

learns to break down tricky steps into

simpler ones. It learns to try a differ-

ent approachwhen the current one isn’t

working.

[OpenAI, 2024]

o1 CoT: Outlining

Implementation Outline:

1. Capture input string as argument.

2. Remove any spaces (if any).

3. Parse input string to extract numbers as arrays.

- Since the input is in the format ’[1,2],[3,4]’, we can:

- Remove outer brackets if necessary.

- Split the string by ’],’ to get each row.

- For each row, remove ’[’ and ’]’, then split by ’,’ to get

elements.

4. Build a 2D array in bash (arrays containing arrays).

[OpenAI, 2024]

o1 CoT: Planning

First, the cipher seems connected to the plaintext.

Given the time constraints, perhaps the easiest way

is to try to see patterns.

Option 1: Try to find mapping from letters to letters.

Do any letters match?

First, let’swrite down the ciphertext and plaintext let-

ters on top of each other.

[OpenAI, 2024]

o1 CoT: Backtracking

Similarly, m(x)* (−x 2) = (−x2n + 2 + m2n−2x2n +

lower terms)m(x) * (−x 2) = (−x 2n + 2 + m 2n−2 x

2n + lower terms).

Wait, actually, this may not help us directly without

specific terms.An alternative is to consider the known

polynomials.

So m(x) = k ...

[OpenAI, 2024]

o1 CoT: Self-Evaluation

Let’s analyze each option.

Option A: “because appetite regulation is a field of

staggering complexity.”

Is that a good explanation? Hmm.

Option B: “because researchers seldom ask the right

questions.”

Does this make sense with the main clause?

[OpenAI, 2024]

Summary

• CoT provides test-time scaling

• CoT looks like search / planning in a classical sense

• RL needed to induce this behavior

Outline

Introduction

The Clues

Technical Background

The Suspects

Implications

Technical Background

• Formalize sampling
of latent reasoning

• No learning yet.

Question: 4 baskets. 3 have 9 apples, 15

oranges, 14 bananas each. 4th has 2 less

of each. Total fruits?

1 - Let’s solve step-by-step:

2 - Fruits in one of first 3 baskets: 9 + 15

+ 14 = 38

3 - Total in first 3 baskets: 38 * 3 = 114

4 - 4th basket: (9-2) + (15-2) + (14-2) =

32

5 - Total fruits: 114 + 32 = 146

Answer: 146 fruits

[Cobbe et al., 2021]

Stepwise CoT Sampling

• x; problem specification

• z1:T ∈ ST ; chain of thought (CoT) steps

• y ∈ Y ; final answer

p(y|x) = Ezp(y|x, z)

[Welleck et al., 2024]

Warm-up: Ancestral Sampling

z1:T ∼ p(·|x)
y ∼ p(·|x, z1:T)

T is the amount of test-time compute

[Wei et al., 2022]

Self-Consistency /
Majority Vote

ForN samples,

zn1:T ∼ p(·|x)
yn ∼ p(·|x, zn1:T)

Pick majority choice yn

[Wang et al., 2022]

Assumption: Automatic Verifier at Training

Verx : Y → {0, 1}

Common datasets:

• Regular expression for math [Cobbe et al., 2021]

• Unit test for code [Hendrycks et al., 2021a]

• Test questions for science [Hendrycks et al., 2021b]

[Uesato et al., 2022]

Automatic Verifier?

• OpenAI primarily
interested in learned

verifiers (ORM)

• Spec: Large-scale
annotation of on-policy

outputs

[Cobbe et al., 2021, Lightman et al., 2023]

Rejection Sampling
Best-of-N

For n = 1 to N :

zn ∼ p(z|x)
yn ∼ p(y|x, zn)

Verified set {yn : Verx(yn)}

[Nakano et al., 2021, Lightman et al., 2023]

Monte-Carlo Roll-Outs

Given partial CoT z1:t, expected
value,

Ey∼p(·|x) Ver(y)

Monte Carlo for this

expectation.

[Wang et al., 2023]

Goal: Learning with Latent CoTs

Maximum likelihood;

max
θ

∑
log p(Ver(y)|x; θ) =∑
logEzp(Ver(y)|x, z; θ)

Classic combinatorial

expectation

Reinforcement Learning

Important practical choices:

• Batched? → Compute trajectories first, then train

• On-policy? → Sample from current model

• KL Constraints on learning.

• Specific algorithm choice (REINFORCE, PPO, etc)

When training a model for rea-

soning, one thing that immedi-

ately jumps to mind is to have hu-

mans write out their thought pro-

cess and train on that. When we

saw that if you train the model

using RL to generate and hone

its own chain of thoughts it can

do even better than having hu-

mans write chains of thought for

it. That was the “Aha!” moment

that you could really scale this.

https://www.youtube.com/watch?v=
tEzs3VHyBDM

https://www.youtube.com/watch?v=tEzs3VHyBDM
https://www.youtube.com/watch?v=tEzs3VHyBDM

Outline

Introduction

The Clues

Technical Background

The Suspects

Implications

The Suspects

• Guess + Check

• Process Rewards

• Search / AlphaZero

• Learning to Correct

The Suspects

• Guess + Check

• Process Rewards

• Search / AlphaZero

• Learning to Correct

Suspect 1: Guess + Check

• 1) Sample N CoTs

• 2) Check if successful

• 3) Train on good ones

Framework: Rejection Sampling EM

max
θ

∑
logEz∼p(z|x;θ)p(Ver(y)|x, z)

• E-Step: For n = 1 to N :

zn ∼ p(·|x)
yn ∼ p(·|x, zn)

Keep verified set Z = {zn : Ver(yn)}

• M-Step: Fit θ′ ← arg maxθ
∑

z∈Z log p(z|x; θ)

[Neal and Hinton, 1998]

Variants
• Self-Training [Yarowsky, 1995]

• Best-of-N Training [Cobbe et al., 2021]

• STaR [Zelikman et al., 2022]

• ReST [Gulcehre et al., 2023]

• ReST-EM [Singh et al., 2023]

• Filtered Rejection Sampling [Nakano et al., 2021]

Empirical Results
[Singh et al., 2023]

Learned Verifier

• Ver available only at train

• Samples can be used to further train a learned verifier
(amortization)

• Can be used for test-time rejection sampling.

Is this o1?

Pro

X Extremely simple and

scalable

X Positive results in past

work

× No evidence this learns to

correct, plan

× Computationally inefficient

search

Is this o1?

Pro

X Extremely simple and

scalable

X Positive results in past

work

× No evidence this learns to

correct, plan

× Computationally inefficient

search

The Suspects

• Guess + Check

• Process Rewards

• AlphaZero

• Learning to Correct

The Suspects

• Guess + Check

• Process Rewards

• AlphaZero

• Learning to Correct

Suspect 2: Process Rewards

• 1) During CoT sampling, use guidance to improve
trajectories

• 2) Check if final versions are successful

• 3) Train on good ones

Process Rewards

• Early learned verification
(PRM) improves over

learned verification (ORM)

r : St → R

[Uesato et al., 2022, Lightman et al., 2023]

Learned Process Rewards

• Rollouts are costly /
require Ver

• Learn rψ(zt) to
approximate

• Use Monte-Carlo for labels

[Lightman et al., 2023, Wang et al., 2023]

Generative Verifiers

• Define rψ(zt) as an LLM

• Merges process reward with generation

• Note: allows for verification CoT

[Zhang et al., 2024, Ankner et al., 2024]

Open Process Rewards
[Wang et al., 2023]

Incorporating at Test-Time

• Process Reward does not
need Ver can be used at

test-time.

• If generative, can be merge
into a singel CoT stream

Let’s analyze each

option.

OptionA: “because

appetite regulation

is a field of stagger-

ing complexity.”

Is that a good ex-

planation? Hmm.

Is this o1?

X Intermediate guides are

effective

X Removes challenges of full

learned verifier

× Not clear if this is enough

for planning.

× Need to combine

generator / guide into one

CoT

Is this o1?

X Intermediate guides are

effective

X Removes challenges of full

learned verifier

× Not clear if this is enough

for planning.

× Need to combine

generator / guide into one

CoT

The Suspects

• Guess + Check

• Process Rewards

• Search / AlphaZero

• Learning to Correct

Reminder: AlphaZero

• Canonical example
of self-learning

• Scaling model
without data

[Silver et al., 2017]

AlphaProof

When presented with a problem, Al-

phaProof generates solution candi-

dates and then proves or disproves

them by searching over possible

proof steps in Lean. Each proof that

was found and verified is used to re-

inforceAlphaProof’s languagemodel,

enhancing its ability to solve subse-

quent, more challenging problems.

[Silver et al., 2017]

Suspect 3: AlphaZero

• 1) Self-play using guided-search with exploration

• 2) Label final outcomes of self-play games

• 3) Train guide and generator

Framework: Expert Iteration

• Iterative algorithm combining learned model + expert
search with a verifier.

• Generate samples using p(y, z|x), reward model g(zt), and
search algorithm (e.g. beam search)

• Label samples using Verx(y)

• Train p(y, z|x), r(zt) on the labeled samples, and repeat

[Anthony et al., 2017]

Framework: Beam Search with Guide

r : St → R

For each step t,

1. Sample many next steps,

zt
i ∼ p(·|x, z1:t−1)

2. Keep the top samples,

ordered by g(zt)

[Snell et al., 2024]

Framework: Beam Search with Guide

r : St → R

For each step t,

1. Sample many next steps,

zt
i ∼ p(·|x, z1:t−1)

2. Keep the top samples,

ordered by g(zt)

[Snell et al., 2024]

Beam Search with Roll-Outs

For partial z1:t−1, rollout,

yn ∼ p(·|x, z1:t−1)

rMC(zt) =
1

N

N∑
n=1

Ver(yn)

[Kazemnejad et al., 2024]

Beam Search with Roll-Outs

For partial z1:t−1, rollout,

yn ∼ p(·|x, z1:t−1)

rMC(zt) =
1

N

N∑
n=1

Ver(yn)

[Kazemnejad et al., 2024]

Beam Search with Roll-Outs

For partial z1:t−1, rollout,

yn ∼ p(·|x, z1:t−1)

rMC(zt) =
1

N

N∑
n=1

Ver(yn)

[Kazemnejad et al., 2024]

Beam Search with Roll-Outs

For partial z1:t−1, rollout,

yn ∼ p(·|x, z1:t−1)

rMC(zt) =
1

N

N∑
n=1

Ver(yn)

[Kazemnejad et al., 2024]

Empirical Results: Expert Iteration
[Hosseini et al., 2024]

MCTS for Language

• Selection: Walk down tree to leaf zt−1

• Expand: Sample ∼ 5 next steps zt, pick one at random

• Rollouts: Sample steps zt+1 . . . zT

• Backprop: Update nodes counts N(z1:i) and wins w(z1:i)
for parents

[Hubert et al., 2021, Feng et al., 2023]

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Generalization: MCTS

Exploration

• MCTS-UCB explores states based on wins and amount of
explorations

w(z1:t)

N(z1:t)
+ α

√
lnN(z1:t−1)

N(z1:t)

• Less strict search process

[Kocsis and Szepesvári, 2006]

Learning from Search

• MCTS tree provides path preferences

• Can be used for preference learning (e.g. DPO)

• Alternative to learning on chains

[Xie et al., 2024, Putta et al., 2024]

Is this o1?

X Major demonstrated RL

result

X Scales to more train-time

search

× Costly to maintain open

states

× More complex

algorithmically

× OpenAI comments /

rumors

Is this o1?

X Major demonstrated RL

result

X Scales to more train-time

search

× Costly to maintain open

states

× More complex

algorithmically

× OpenAI comments /

rumors

The Suspects

• Guess + Check

• Process Rewards

• Search / AlphaZero

• Learning to Correct

What does exploration look like?

• Game Playing - Explore alternative moves.

• Language - Nearly infinite ”moves”

• Exploration to learn strategies

Suspect 4: Learning to Correct

• 1) Start with failed CoT

• 2) Search to find successful corrections

• 3) Train on full CoT

Framework: Self-Correction

• Aim: Find similar CoT pairs
z′, z′′ where z′′ is better.

• Train the model to improve
upon z′

[Welleck et al., 2022]

Challenges: Learning Correction

• Collapse: Model may learn to just ignore negative

• Distribution Shift: Actual mistakes may deviate from
examples

[Gandhi et al., 2024]

RL from Mistakes

• Start with z′

• Learn to correct from
verifier

[Gandhi et al., 2024]

Empirical Results

Generalization: Stream of Search

• Find z∗1:T as optimal length
CoT

• Find z′1:T ′ with T ′ > T
through backtracking tree

search

• Train model on z′1:T ′

[Gandhi et al., 2024]

From Tree to Stream

• Tree search explores
multiple paths

• Stream presents a linear
sequence

• Allows model to mistakes
in stream

Is this o1?

X Learns to correct and plan

X Single test-time model

× Complex training process

× Limited empirical evidence

Is this o1?

X Learns to correct and plan

X Single test-time model

× Complex training process

× Limited empirical evidence

Outline

Introduction

The Clues

Technical Background

The Suspects

Implications

Replication

• Critical to have open-source versions

• Systems aspects are different

• Versions may not look the same

Research Implication

• Beyond Emergent Ablities

• Inference Time Systems

• From Prompting to Specification

• Evaluations Need to Be Much Harder

• CoT Change Interpretability

Research Implication

• Beyond Emergent Ablities

• Inference Time Systems

• From Prompting to Specification

• Evaluations Need to Be Much Harder

• CoT Change Interpretability

Research Implication

• Beyond Emergent Ablities

• Inference Time Systems

• From Prompting to Specification

• Evaluations Need to Be Much Harder

• CoT Change Interpretability

Research Implication

• Beyond Emergent Ablities

• Inference Time Systems

• From Prompting to Specification

• Evaluations Need to Be Much Harder

• CoT Change Interpretability

Research Implication

• Beyond Emergent Ablities

• Inference Time Systems

• From Prompting to Specification

• Evaluations Need to Be Much Harder

• CoT Change Interpretability

Thank You

https://github.com/srush/awesome-o1

https://github.com/srush/awesome-o1

Reference I

[Ankner et al., 2024] Ankner, Z., Paul, M., Cui, B., Chang, J. D., and Ammanabrolu, P.

(2024).

Critique-out-loud reward models.

arXiv [cs.LG].

[Anthony et al., 2017] Anthony, T., Tian, Z., and Barber, D. (2017).

Thinking fast and slow with deep learning and tree search.

arXiv [cs.AI].

[Brown and Sandholm, 2017] Brown, N. and Sandholm, T. (2017).

Libratus: The superhuman AI for no-limit poker.

In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

California. International Joint Conferences on Artificial Intelligence Organization.

Reference II

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,

G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,

M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,

A., Sutskever, I., and Amodei, D. (2020).

Language models are few-shot learners.

arXiv [cs.CL].

[Cobbe et al., 2021] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L.,

Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and Schulman, J. (2021).

Training verifiers to solve math word problems.

arXiv [cs.LG].

Reference III

[Feng et al., 2023] Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y., Zhang, W., and

Wang, J. (2023).

Alphazero-like tree-search can guide large language model decoding and training.

arXiv [cs.LG].

[Gandhi et al., 2024] Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma, A., and

Goodman, N. D. (2024).

Stream of search (SoS): Learning to search in language.

arXiv [cs.LG].

[Gulcehre et al., 2023] Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova, K., Weerts, L.,

Sharma, A., Siddhant, A., Ahern, A., Wang, M., Gu, C., Macherey, W., Doucet, A., Firat, O.,

and de Freitas, N. (2023).

Reinforced self-training (ReST) for language modeling.

arXiv [cs.CL].

Reference IV

[Hendrycks et al., 2021a] Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A.,

Guo, E., Burns, C., Puranik, S., He, H., Song, D., and Steinhardt, J. (2021a).

Measuring coding challenge competence with APPS.

arXiv [cs.SE].

[Hendrycks et al., 2021b] Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song,

D., and Steinhardt, J. (2021b).

Measuring massive multitask language understanding.

[Hendrycks et al., 2021c] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang,

E., Song, D., and Steinhardt, J. (2021c).

Measuring mathematical problem solving with the MATH dataset.

arXiv [cs.LG].

Reference V

[Hosseini et al., 2024] Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni, A., and

Agarwal, R. (2024).

V-STar: Training verifiers for self-taught reasoners.

In First Conference on Language Modeling.

[Hubert et al., 2021] Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S.,

and Silver, D. (2021).

Learning and planning in complex action spaces.

arXiv [cs.LG].

[Jones, 2021] Jones, A. L. (2021).

Scaling scaling laws with board games.

arXiv [cs.LG].

Reference VI

[Kazemnejad et al., 2024] Kazemnejad, A., Aghajohari, M., Portelance, E., Sordoni, A.,

Reddy, S., Courville, A., and Roux, N. L. (2024).

VinePPO: Unlocking RL potential for LLM reasoning through refined credit assignment.

arXiv [cs.LG].

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006).

Bandit based monte-carlo planning.

In Lecture Notes in Computer Science, Lecture notes in computer science, pages 282–293.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[Lightman et al., 2023] Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T.,

Leike, J., Schulman, J., Sutskever, I., and Cobbe, K. (2023).

Let’s verify step by step.

arXiv [cs.LG].

Reference VII

[Nakano et al., 2021] Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C.,

Jain, S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou, T., Krueger, G., Button,

K., Knight, M., Chess, B., and Schulman, J. (2021).

WebGPT: Browser-assisted question-answering with human feedback.

arXiv [cs.CL].

[Neal and Hinton, 1998] Neal, R. M. and Hinton, G. E. (1998).

A view of the em algorithm that justifies incremental, sparse, and other variants.

In Learning in Graphical Models, pages 355–368. Springer Netherlands, Dordrecht.

[Nye et al., 2021] Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber,

D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., and Odena, A. (2021).

Show your work: Scratchpads for intermediate computation with language models.

arXiv [cs.LG].

Reference VIII

[OpenAI, 2024] OpenAI (2024).

Learning to reason with LLMs.

https://openai.com/index/learning-to-reason-with-llms/.

Accessed: 2024-10-29.

[Putta et al., 2024] Putta, P., Mills, E., Garg, N., Motwani, S., Finn, C., Garg, D., and Rafailov,

R. (2024).

Agent Q: Advanced reasoning and learning for autonomous AI agents.

arXiv [cs.AI].

[Silver et al., 2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.

(2017).

Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

arXiv [cs.AI].

https://openai.com/index/learning-to-reason-with-llms/

Reference IX

[Singh et al., 2023] Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil, P., Garcia, X., Liu,

P. J., Harrison, J., Lee, J., Xu, K., Parisi, A., Kumar, A., Alemi, A., Rizkowsky, A., Nova, A.,

Adlam, B., Bohnet, B., Elsayed, G., Sedghi, H., Mordatch, I., Simpson, I., Gur, I., Snoek, J.,

Pennington, J., Hron, J., Kenealy, K., Swersky, K., Mahajan, K., Culp, L., Xiao, L., Bileschi,

M. L., Constant, N., Novak, R., Liu, R., Warkentin, T., Qian, Y., Bansal, Y., Dyer, E.,

Neyshabur, B., Sohl-Dickstein, J., and Fiedel, N. (2023).

Beyond human data: Scaling self-training for problem-solving with language models.

arXiv [cs.LG].

[Snell et al., 2024] Snell, C., Lee, J., Xu, K., and Kumar, A. (2024).

Scaling LLM test-time compute optimally can be more effective than scaling model

parameters.

arXiv [cs.LG].

[Sutton, 2019] Sutton, R. (2019).

The bitter lesson.

Reference X

[Uesato et al., 2022] Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L.,

Creswell, A., Irving, G., and Higgins, I. (2022).

Solving math word problems with process- and outcome-based feedback.

arXiv [cs.LG].

[Wang et al., 2023] Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y., Chen, D., Wu, Y., and

Sui, Z. (2023).

Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations.

arXiv [cs.AI].

[Wang et al., 2022] Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.,

Chowdhery, A., and Zhou, D. (2022).

Self-consistency improves chain of thought reasoning in language models.

arXiv [cs.CL].

Reference XI

[Wei et al., 2022] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.,

Le, Q., and Zhou, D. (2022).

Chain-of-thought prompting elicits reasoning in large language models.

arXiv [cs.CL], pages 24824–24837.

[Welleck et al., 2024] Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie, A.,

Neubig, G., Kulikov, I., and Harchaoui, Z. (2024).

From decoding to meta-generation: Inference-time algorithms for large language

models.

arXiv [cs.CL].

[Welleck et al., 2022] Welleck, S., Lu, X., West, P., Brahman, F., Shen, T., Khashabi, D., and

Choi, Y. (2022).

Generating sequences by learning to self-correct.

arXiv [cs.CL].

Reference XII

[Xie et al., 2024] Xie, Y., Goyal, A., Zheng, W., Kan, M.-Y., Lillicrap, T. P., Kawaguchi, K., and

Shieh, M. (2024).

Monte carlo tree search boosts reasoning via iterative preference learning.

arXiv [cs.AI].

[Yarowsky, 1995] Yarowsky, D. (1995).

Unsupervised word sense disambiguation rivaling supervised methods.

In Proceedings of the 33rd annual meeting on Association for Computational Linguistics -,

Morristown, NJ, USA. Association for Computational Linguistics.

[Zelikman et al., 2022] Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. (2022).

STaR: Bootstrapping reasoning with reasoning.

arXiv [cs.LG].

Reference XIII

[Zhang et al., 2024] Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A., and Agarwal,

R. (2024).

Generative verifiers: Reward modeling as next-token prediction.

arXiv [cs.LG].

